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triangular lattices 
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Abstract. Using the phenomenological renormalisation (PR)  method we obtain the critical 
probability for partially directed site percolation on the square and triangular lattices 
( pc  = 0.63 17 * 0.006 and p c  = 0.5468 * 0.005, respectively). We discuss the corrections to 
scaling in the calculation of the anisotropy exponent 8 (= v,,/ v-) and the critical probability, 
and we show that it is necessary to work with at least two correction terms. This is in 
contrast to the usual analysis where only one correction exponent is used in PR calculations. 

1. Introduction 

It is well known that the introduction of a privileged connectivity direction in the 
percolation problem leads to a different universality class from that of ordinary 
percolation (Obukhov 1980, Kinzel 1983), but much more effort has been devoted to 
the case of fully directed percolation (see figure l ( a ) )  than to the partially directed 
one (see figure 1 (b ) )  (Kertksz and Vicsek 1980). The first purpose of the present paper 
is to compute accurately, for the first time to our knowledge, the critical probability 
for partially directed site percolation on the square and triangular lattices (see figures 
I(b) and ( c ) ) .  

In our calculation we have used the transfer matrix technique and the phenomeno- 
logical renormalisation ( PR) approach introduced by Nightingale ( 1976, 1982 and 
references therein) for spin systems and generalised to percolation by Derrida and 
Vannimenus (1980). The PR is a powerful numerical method and one can frequently 
obtain more precise results using the PR than with other methods (such as the Monte- 
Carlo approach, for example). However, one of the difficulties in this method is that 
one does not in general know the form of the corrections to scaling which enter the 
extrapolation to the thermodynamic limit, and there is presently some debate about 
the extrapolation procedures (Privman and Fisher 1983, Privman 1984, Herrmann and 
Stauffer 1984). The problem of the convergence of the numerical results is more 
delicate for partially directed problems than for fully directed ones to judge from the 
work of Nadal et a1 (1982) and Privman and Barma (1984) on directed lattice animals: 
partially directed percolation turns out to be very instructive in that respect, and it 
provides a good example to study corrections to scaling. 

t Supported financially by the Consejo Nacional de Investigaciones Cientificas y TCcnicas de la Republica 
Argentina. 
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Figure 1. Examples of clusters for ( a )  fully directed site percolation on the square lattice 
and ( b )  and ( c )  partially directed site percolation on the square and triangular lattices, 
respectively. The full circles (open squares) denote the sites present (absent). The clusters 
are the sites present connected by lines. 

The discussion of these corrections and of the suitable extrapolation procedure is 
the second purpose of the present work and is developed in 9 3. We find that the 
corrections-to-scaling exponent is smaller than one (Privman and Fisher 1983, Privman 
1984), but that is necessary to keep two correction terms to have a consistent extrapola- 
tion for the two lattices studied. 

2. Brief review of the method 

In the directed percolation problem there are two different correlation lengths, 611 and 
tL, parallel and perpendicular to the privileged direction, respectively (Kinzel 1983). 
Close to the critical probability pc  these lengths behave as 

511 - ( P C - P ) - ” ’  6 , - ( P c - P ) - y -  ( 1 )  
where the lattice sites are present (absent) with probability p (1 - p ) .  The calculations 
follow the methods developed by Derrida and Vannimenus (1980) and Derrida and 
De Seze (1982): we compute the second largest eigenvalue A N  of the transfer matrix 
(the first eigenvalue being identically one) for strips of N rows. The models studied 
are the square and triangular lattices with periodic boundary conditions which are 
described in figures 1 ( b )  and ( c )  respectively. Taking the privileged direction along 
the strip, we have (Kinzel and Yeomans 1981) 

6; = -l/ln(AN(P)). (2) 
Now, from PR arguments and working with three strips of width N - 1, N and N +  1, 
we can compute estimates O N  and p ;  for the anisotropy exponent 0 = q/ vl and for 
the critical probability by demanding that the following equations hold (for more 
details see Kinzel and Yeomans 1981): 

Let us now discuss the problem of the corrections to scaling. As usual (Privman 
and Fisher 1983), we suppose the scaling form 

5 r ( p )  = NBf(g,”’”-, g.N-”) (4) 

for large N wheref(x, y )  is an analytic function in x = y = 0 which takes the corrections 
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due to finite-size effects into account and g, and g, are the relevant and irrelevant 
scaling fields respectively ( 6  and v, are the critical exponents for the infinite system). 
Aharony and Fisher (1983) (see also Privman and Fisher 1983) have pointed out that 
these scaling fields are non-linear, and close to the critical point can be expanded as 

( 5 )  

where up U and bp are constants. Let us note that g p  is normalised in such a way as 
to vanish for p = p c  (Aharony and Fisher 1983, Luck 1984). From equations (3)-(5) 
and after some algebra we get 

g p  = ( P - PA + ap ( P - PA2 + . . . 
g, = U + bp( p - p c )  + . . . 

8 N = 8 + N - " ( A l + A 2 N - ' + . . . )  ( 6 a )  

p F = p c +  N- l '" - -" (B ,+BZN- ' '+ .  ..) ( 6 6 )  

A1 = - (a1u /b0) (wvJ2  

where AI, A2,  B ,  and B2 are constants; for example, 

B1= - ( a ,  U /  ao)w (1 + wv,). (7) 

Here a 0 = f ( 0 ,  01, a ,  = ( d f ( x ,  y ) /dy ) l ,= ,=o  and bo= ( d f ( x ,  y ) / d ~ ) I ~ = ~ ~ = ~ .  The exponents 
6 and 6' are given by 

6 = minimum of { U, l} 

6' = minimum of {w,  2). ( 8 b )  

Let us stress that in equation (4) we have considered (for simplicity) only one 
irrelevant scaling field, but other irrelevant scaling fields (with exponents U',  U",  . . . ; 
0 < w < w ' <  w"<  . . .) can appear. In this case equations (6) and (7) hold but 

6=minimumof{w, l , ( w ' - w ) }  

S'=minimum of {U, 2, ( w ' - w ) } .  
(9) 

3. Analysis of the results 

The results for O N  and p F  obtained on strips of width up to 12 from equations (2) 
and (3) are shown in tables 1 and 2 for the square and triangular lattices, respectively. 
We now discuss several procedures to analyse these data and extract an accurate value 
of Pc. 

3.1. Extrapolation with one correction term 

We consider first the simplest type of analysis, applied only to the square lattice, and 
try to fit the values of O N  and p :  using only the dominant correction term in the 
extrapolation: 

ON = 8 +  AN-" 

p F  = pc+ BN-".  

From now on, we define the error E of a fit by 
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Table 1. Successive approximations O N  and p," to the anisotropy exponent and the 
percolation threshold obtained from equations (3) for partially directed site percolation 
on the square lattice (see figure I ( b ) )  using strips of width N - I ,  N and N +  1 with 
periodic boundary conditions. 0,- and F c  are the values obtained using an extrapolation 
with only one correction term (equations ( I O ) )  with 6 = 1,7052, A =  -1.5107, w =0.53, 
p c  = 0.632 38, B = -0.405 75 and P = 1.56. 

N P: 6% - eh 2 -P: 
4 
5 
6 
7 
8 
9 

I O  
I I  

0.9472 
1.0626 
1.1207 
1.1667 
1.2034 
1.2338 
1.2594 
1.2813 

0.57909 
0.5995 I 
0.60757 
0.6 1290 
0.61655 
0.61920 
0.62 120 
0.62274 

0.0334 
-0.0012 

-0.0001 
< I O - *  

<IO-*  

< 

0.00662 
-0.00008 

0.00002 
-0.0000 I 

0.00001 

0.00001 

< 1 0 ~  

Table 2. Successive approximations 0- and p," obtained as in table 1 but for the triangular 
lattice (see figure 1 ( c ) ) .  

4 
5 
6 
7 
8 
9 

I O  
1 1  

1.0585 
1.1455 
1.2060 
1.2495 
1.2824 
1.3085 
1.3301 
1.3482 

0.50863 
0.52 167 
0.52896 
0.53334 
0.53622 
0.53823 
0.53972 
0.54085 

where x N  is the true value and 2, is the approximate one. To obtain the constants 
(such as 0 and A in equation ( loa ) )  in the extrapolation formulae, we demand that 
E be a minimum for fixed values of the correction exponents (such as w in equation 
(loa)). As is seen in table 1, a very good fit can be obtained with 0 = 1.7052, w = 0.53, 
p c  = 0.632 38 and E = 1.56. Note that the values of w and E agree rather well with the 
relation E = U +  l / v ,  given by equation (6) (using v L =  1.1 (see Kinzel 1983) and 
w = 0.53 one obtains E = 1.44). But this agreement is misleading because the value of 
the anisotropy exponent is too large: on general field-theoretic grounds, one expects 
0 to have the same value, 0 = 1.576 (Kinzel 1983), as in fully directed percolation. 
Even if the square lattice were for some reason a special case, one would expect 
anisotropy effects to be weaker and 0 to be smaller for partially than for fully directed 
percolation. The value 1.7052 is well out of the error bars quoted in previous works 
(for the fully directed case): 1.543 s 0 s 1.590 from series expansions (De'Bell and 
Essam 1983), 1.564s 0 s  1.581 from the quantum reggeon spin model (Brower et a1 
1978, Cardy and Sugar 1980) and 1.567 s 0 s 1.585 using the best values presently 
available for the exponents vll and v, (Kinzel 1983). This shows that it can be dangerous 
to make the extrapolation of equation ( l o a )  without any knowledge about the correc- 
tions to scaling. 
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3.2. Confrontation of two lattices 

If one still assumes that nothing is known about the value of the anisotropy exponent, 
another lattice can be used in order to check the result obtained. For the triangular 
lattice we find a good fit to equations (10) with 8 =  1.5651 and p: =0.54692, using 
w = 0.83 and e = 1.79. We note that the results contradict the previous ones on the 
square lattice because the values of 8, w and E are quite different, whereas one expects 
the correction exponents o and e to be the same for all partially directed lattices. In 
figure 2 we plot the error E (defined by equation ( 1  I ) )  in the anisotropy exponent 
obtained using equation ( l o a )  as a function of w. It is not possible to find a value of 
w for which good fits to equation ( l o a )  are obtained for the square and triangular 
lattices at the same time. 

x 10- 

E 

Figure 2. The error E (defined by equation ( 1  I ) )  in 
the extrapolation using one correction term for the 
anisotropy exponent (equation ( loa) )  plotted as a 
function of the leading correction exponent W .  The 
crosses correspond to the square lattice and the 
circles to the triangular one. The fits are performed 

w with N , = 6  and N , =  11.  

3.3. Extrapolation with two correction terms 

At this stage there are two possibilities in order to make compatible extrapolations: 
either to work with much larger values of N (which is usually impractical), or to take 
higher-order terms in the extrapolation into account. We have used this second method, 
keeping two terms in equations (6). If one assumes no knowledge of the anisotropy 
exponent, one can ask for the value of w ( 8  and 6' are given by equations (8)) for 
which one obtains the same value 8 for the square and triangular lattices. Using 
vl = 1.1 (Kinzel 1983), this gives w -- 0.96, and for this value of w we obtain 8(square) = 
1.5428, 8(triangular) = 1.5432, pc(square) = 0.631 15 and p,(triangular) = 0.546 59. The 
value of 6 now obtained is much better than the first estimation for the square lattice. 

In order to obtain a better estimation of the critical probability, we now fix 8 in 
equation (6a)  to the accepted value ( 8  = 1.576 using the best available values of vlI 
and v, (Kinzel 1983)). Following the general method described above, we minimise 
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the error E in the fit of the anisotropy exponent for a given value of the correction 
exponent w using equations (6a) and (8a). This error is plotted in figure 3 as a function 
of w for the square and triangular lattices. Considering both lattices at the same time, 
we find that w = 0.8 is a reasonable value. In figure 4 we show the extrapolated value 
of p c  as a function of w for both lattices. Assuming 0.65 =Z w d 0.95, we obtain as our 
final results 

pc( square) = 0.63 17 * 0.006 

p c  (triangular) = 0.5468 * 0.005. 

E 

W 

Figure 3. As figure 2 but using !WO correction terms 
with the value of 0 fixed to 0 = 1.576 in equation 
(6a)  and S given by equation (8a).  

The last error bar is greater than the one obtained from the plot of figure 4 because 
it takes other analyses of equation ( 1  1) with different values of Ni and Nf into account. 

These results were obtained using equations (8), that is assuming that there is only 
one irrelevant scaling field. Using the more general equations (9), together with the 
criterion of minimum error in the anisotropy exponent, we have checked that the 
introduction of an exponent w'  (working with all values of w and U ' )  does not change 
the results (12). 

It is instructive to consider the magnitude of the two correction terms appearing 
in equations (6). For example, the best fit with w = 6 = 0.84 and 0 = 1.576 gives 
A ,  = -2.4499 and A,  = 1.7977 for the square lattice. The second term is of opposite 
sign to the first one, but there is no real cancellation between the two terms (Herrmann 
and Stauffer 1984, Privman 1984): for N = 10, say, the relative magnitude of the second 
term is small (-1O0/o of the first one). Still, it is important to take it into account and 
its omission changes the extrapolation significantly. For the triangular lattice the 
second correction is extremely small: for w = 6 = 0.8 one finds A, = -1.5516, A2 = 
0.005 30 and the one-correction-term extrapolation is already satisfactory. 
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w 

Figure 4. The extrapolated values of the threshold p c  obtained from equations ( 6 b )  and 
(8b )  (using N, = 6 and N, = 1 1  in equation ( I  I ) )  plotted against w for the square (crosses) 
and triangular (circles) lattices. The scale on the right- (left-) hand side is for the square 
(triangular) lattice. 

Let us finally compare our value for w with the results obtained for the correction 
exponent A ,  in directed percolation from different approaches (Adler et a1 1983). In 
our notation A, = v,w and, using the quoted values A ,  = 0.95-1.25 and U, = 1.1, one 
obtains w = 0.86- 1.14, consistent with our best estimate. This agreement should not 
be considered as conclusive in view of the difficulties encountered in related problems, 
for example for self-avoiding walks (Lyklema and Kremer 1985). 

4. Conclusion 

We have used various methods to analyse our results for partially directed percolation 
in order to extract accurate values of the percolation threshold from data obtained on 
finite strips by a transfer matrix technique. On the square lattice a simple extrapolation 
with one correction term gives unsatisfactory results for the anisotropy exponent, 
though the quality of the numerical fit is apparently very good. This shows that one 
must be cautious in using such extrapolations in the absence of extra information. 
Unfortunately, the leading correction exponent w and the size Nmi, above which the 
simple asymptotic form of equation ( l o a )  holds are generally unknown: Luck (1985) 
has studied these points recently and has concluded that predictions for them are likely 
to be more difficult than solving the model in the thermodynamic limit. 

It is also very difficult to study large values of N, and the alternative approach we 
have found useful consists in working with several lattices and in using higher-order 
correction terms, as in equations (6). This approach is reasonable, even with rather 
small values of N (-lo), because the condition that the extrapolated critical exponents 
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and the correction exponents are the same for the different lattices reduces the number 
of parameters in the analysis; it leads to satisfactory results in our case, which was a 
priori a difficult one. 

As a final remark, the leading correction exponent w is clearly less than one for 
the partially directed percolation problems studied here. The rate of convergence is 
then rather slow, and this explains why higher correction terms are needed. The 
situation seems to be different in other problems (Derrida and De Seze 1982), but the 
present example is useful because it shows clearly the difficulties that may be encoun- 
tered with the phenomenological renormalisation method. 
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